Bayesian Nonparametric Model for Zero-Inflated Outcomes Clustering, Prediction, and Causal Inference

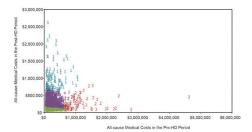
Arman Oganisian

with Jason Roy and Nandita Mitra

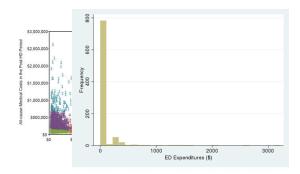
Division of Biostatistics Department of Biostatistics, Epidemiology, and Informatics University of Pennsylvania

July 31, 2019

MOTIVATION

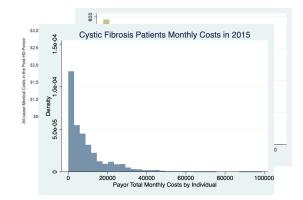

- ► Health policy questions involving costs are complicated:
 - Causality: How different would average costs have been under alternative treatment?
 - Prediction: How much medical costs will subject X likely accumulate?
 - Clustering: Can we identify interesting patient subgroups?
- Cost data are complicated:
 - zero-inflation
 - skewness
 - multimodality
- Complicated questions with complicated data.

EXAMPLES FROM LITERATURE



DEPARTMENT of BIOSTATISTICS EPIDEMIOLOGY & INFORMATICS

EXAMPLES FROM LITERATURE



DEPARTMENT of BIOSTATISTICS EPIDEMIOLOGY & INFORMATICS

EXAMPLES FROM LITERATURE

Observed data $D = (D_i)_{i=1:n} = (Y_i, x_i = (A_i, L_i))_{i=1:n}$

- Ignore zeros (efficiency loss, underestimate treatment effect).
- Add a penny. (ad hoc, structural zeros → structural pennies)
- Hurdle model (parametric, no clustering)

$$Y_{i} \mid A_{i}, L_{i} \sim \pi \left(x_{i}^{\prime} \gamma \right) \delta_{0} \left(y_{i} \right) + \left(1 - \pi \left(x_{i}^{\prime} \gamma \right) \right) \cdot f \left(y_{i} \mid x_{i}^{\prime} \beta \right)$$

Under certain identification assumptions, can compute $\Psi = E[Y^1 - Y^0].$

$$E[Y^{a}|D] = \int_{\beta} \int_{L} E[Y|A = a, L, \beta] p(L) p(\beta|D) dL d\beta$$

DEPARTMENT of BIOSTATISTICS EPIDEMIOLOGY & INFORMATICS

Generative model for the full joint data $p(D_i|\omega_i)$

$$\begin{aligned} Y_i \mid A_i, L_i \sim \pi \left(x'_i \gamma_i \right) \delta_0 \left(y_i \right) + \left(1 - \pi \left(x'_i \gamma_i \right) \right) \cdot N \left(y_i \mid x'_i \beta_i, \phi_i \right) \\ A_i \mid L_i \sim \text{Ber} \left(\text{expit} \left(m'_i \eta_i \right) \right) \\ L_i \sim p \left(l_i \mid \theta_i \right) \end{aligned}$$

Joint prior for $\omega_i = (\beta_i, \phi_i, \gamma_i, \eta_i, \theta_i)$

 $\omega_i \mid G \sim G$ $G \sim DP(\alpha G_0)$

Conditional posterior of *i*th subject's parameters

$$p(\omega_{i}|\omega_{1:(i-1)}, D) \propto \frac{\alpha}{\alpha + i - 1} p(D_{i}|\omega_{i}) G_{0}(\omega_{i}) + \frac{1}{\alpha + i - 1} \sum_{j < i} p(D_{i}|\omega_{j}) I(\omega_{i} = \omega_{j})$$

Data adaptive.

- Posterior clustering.
- ► Flexible predictions by ensembling cluster-specific models.

MCMC INFERENCE: PARTITIONS AND PREDICTIONS

DEPARTMENT OF BIOSTATISTICS EPIDEMIOLOGY & INFORMATICS

In the paper we have

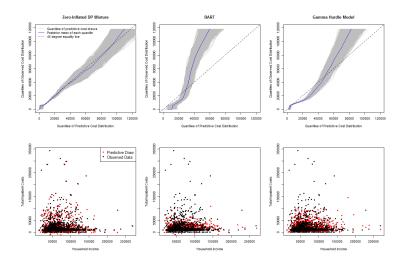
- expressions for key posterior distributions.
- required Monte Carlo procedures.
- standardization procedure around the model.
- posterior predictive checks assessing positivity.
- hard posterior classification in presence of label switching.
- uncertainty visualization in cluster assignment.

- Simulated cost data from three distinct Bernoulli-Gamma hurdle model.
- n = 3,000 subjects, 5 covariates, single binary treatment.

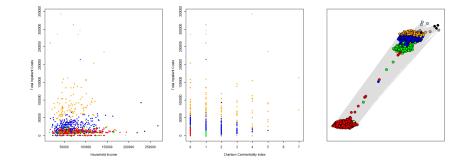
DGP	Model	Bias	Coverage	Rel. Interval Width
Clustered	Zero-Inflated DP	081	94.3%	1.10
	BART	746	76.2%	1.34
	Doubly Robust	.795	87.1%	1.70
	Gamma Hurdle	509	79.8%	1
	Gamma +.01	1.817	4.7%	1.39
Parametric	Zero-Inflated DP	.097	95.1%	1.01
	BART	054	96.1%	1.09
	Doubly Robust	027	95.9%	1.07
	Gamma Hurdle	014	95.1%	1
	Gamma +.01	489	100%	2.32

DEPARTMENT OF BIOSTATISTICS EPIDEMIOLOGY & INFORMATICS

TREATMENT COSTS FOR ENDOMETRIAL CANCER


- ► Data source: SEER-Medicare.
- ► Endometrial cancer patients (N≈1,000).
- ► Treatment: post-hysterectomy radiation vs. chemotherapy.
- Outcome: Total inpatient costs over 2 years.
 - Skewed, zero-inflated
 - ▶ Chemo arm: 15% zeros; RT arm: 8%
- ► Measured confounders: tumor grade, cancer stage, CCI.

PREDICTIONS

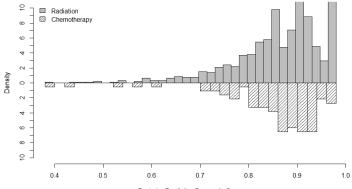


DEPARTMENT OF BIOSTATISTICS EPIDEMIOLOGY & INFORMATICS

POSTERIOR CLUSTERING

AVERAGE TREATMENT EFFECTS

	Avg. Causal Effect	Median Causal Effect	Zero - Risk Ratio
Zero-Inflated DP	1672.62	872.68	0.498
Zero-milateu Di	(-2566.42, 5722.56)	(-833.35, 2790.18)	(0.31, 0.78)
BART	1779.62 (-6085.89, 9797.13)	-	-
Gamma Hurdle	2016.71 (-1499.38, 5593.40)	-	.505 (.34, .76)
Gamma +.01	4889.00 (1004.37, 8795.61)	-	-



DEPARTMENT of BIOSTATISTICS EPIDEMIOLOGY & INFORMATICS

POSTERIOR PREDICTIVE PROPENSITY SCORES

Posterior Predictive Propensity Score

Posterior Predictive Propensity Score

DEPARTMENT of BIOSTATISTICS EPIDEMIOLOGY & INFORMATICS

PAPER, TUTORIAL, SOFTWARE

- arXiv: https://arxiv.org/abs/1810.09494
- Interactive DP Tutorial with R Shiny: https: //stablemarkets.shinyapps.io/dpmixapp/
- ChiRP R package: https://stablemarkets.github. io/ChiRPsite/index.html

Center for Causal Inference @StableMarkets DEPARTMENT OF BIOSTATISTICS EPIDEMIOLOGY & INFORMATICS

