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Study Motivation

Pediatric acute myeloid leukemia (AML) is a cancer of the blood and bone
marrow.

Patients move through sequence of chemotherapy courses

Anthracyclines (ACT) therapy is effective at suppressing cancer.

ACT also lowers ejection fraction (EF), which can worsen survival.

Goal: Estimate (and optimize) effect of ACT treatment rules on survival.

Data: COG AAML1031 Phase III Trial

Reference:
Arman Oganisian, Kelly D Getz, Todd A Alonzo, Richard Aplenc, Jason A Roy, Bayesian

semiparametric model for sequential treatment decisions with informative timing, Biostatistics,

2024; kxad035, https://doi.org/10.1093/biostatistics/kxad035
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Data Generating Process - AAML1031

Subject 1
Y1 = 0 Y2 Y3 Y4 T

W1 W2 W3 W4

Subject 2
Y1 = 0 Y2 Y3 C

W1 W2 W3

Subject 3
Y1 = 0 Y2 T

W1 W2

Time of k th decision, Yk .

At time Yk , confounders Lk are measured...

... combined with previous history to decide treatment Ak ∈ {0, 1}.
Timing varies across patients.
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Our approach

Bayesian semiparametric hazard models robust to misspecification.

Respects continuous-time nature of transitions.

Allows for covariate-dependent censoring and death before treatment course
completion.

Causal estimation: posterior survival probabilities adjusted for time-varying
confounding and informative timing.

Optimization: Posterior distribution over optimal rule parameters.

Full posterior inference for other functionals of the joint.
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Notation

History: X̄k = (X1,X2, . . . ,Xk); Future: X k = (Xk ,Xk+1, . . . ,XK )

κ: number of treatment courses.

For k = 1, 2, . . . , κ, define Wk waiting time from treatment k to next event

Wk = min(T ,Yk+1,C )− Yk

with δk ∈ {1, 0,−1},

Confounder history L̄k .

Available information ahead of Ak , Hk = (L̄k , W̄k−1, Āk−1).

The observed data for subject i consists of Di = (L̄κi , Āκi , W̄κi , δ̄κi ). Full data
denoted by D = {Di}ni=1.
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Dynamic ACT Assignment Rules

For k = 1, 2, . . . ,K , define rule

rk : Hk → Sk

Available history space Hk .

Feasible set of treatment options Sk ⊂ A = {0, 1}

r = {rk}Kk=1

Distinct from static treatments:

Assignment is determined dynamically: Ak = rk(hk).

Example: rk(Lk ; τ) = I (Lk > τ)I (Ak−1 6= 1).
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Potential Outcomes and Target Estimand

K (r): potential number of treatment courses.

W̄K(r)(r) = {W1(r),W2(r), . . . ,WK(r)(r)}: potential waiting times.

T (r) =
∑K(r)

k=1 Wk(r): potential survival time.

Target estimands:

Population-level survival rate: Ψr (t) = P(T (r) > t).

Contrast effects of rules: Ψr (t)/Ψr ′(t).

For some t, find optimal rule r∗ = argmaxr∈RΨr (t)

Must identify joint distribution of potential outcomes: f ∗(w̄k(r),K (r) = k)
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Identification Assumptions

Sequential Ignorability:

Wk(r), Lk(r) ⊥ Ak | Āk−1, L̄k , W̄k−1, κ ≥ k

Treatment Positivity:

P(Ak = ak | H̄k = hk , κ ≥ k) > 0

for each h̄k ∈ Hk in support and each feasible ak ∈ Sk .

Other assumptions: ignorable censoring; censoring positivity; SUTVA.
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A G-formula for Ψr(t): case K (r) = 2

Identification via a version of the g-formula (Robins, 1986; Tsiatis et al., 2020).

f ∗(w̄2(r),K (r) = 2) =

∫
L̄2

f21(w2 | w̄1, ā
r
2, l̄2)g2(l2 | w̄1, ā

r
1, l̄1)f10(w1 | ar1, l1)g1(l1)dl̄2

fks(wk | w̄k−1, ā
r
k , l̄k): sub-density function for waiting time, wk , until event

of type s ∈ {0, 1}.

gk(lk | w̄k−1, ā
r
k−1, l̄k−1): model for distribution of confounders measured at

course k.
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A G-formula for Ψr(t): case K (r) = k

Identification via a g-formula (Robins, 1986; Tsiatis et al., 2020).

f ∗(w̄k(r),K (r) = k) =

∫
L̄k

fk1(wk | w̄k−1, ā
r
k , l̄k)gk(lk | w̄k−1, ā

r
k−1, l̄k−1)

×
k−1∏
j=1

fj0(wj | w̄j−1, ā
r
j , l̄j)gj(lj | w̄j−1, ā

r
j−1, l̄j−1) dl̄k

fks(wk | w̄k−1, ā
r
k , l̄k): sub-density function for waiting time, wk , until event

of type s ∈ {0, 1}.

gk(lk | w̄k−1, ā
r
k−1, l̄k−1): model for distribution of confounders measured at

course k.
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The Cause-Specific Hazard

Model sub-density indirectly by modeling the cause-specific hazard:

fks(wk | xk) = λs(wk | xk) exp
{
−
∫ wk

0

∑
v∈{0,1}

λv (u | xk)du
}

with feature vector xk = (w̄k−1, ā
r
k , l̄k).
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Bayesian Proportional Hazard Models

Specify a proportional hazard model for waiting times:

λs(wk | xk) = λks0(wk) exp
(
x ′kβks

)
Priors

λks0 ∼ GP(αksλ
∗
ks0)

βks ∼ fβks
(βks)

Empirically calibrated hyperparameters

Good frequentist properties in simulations.
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Illustration of Posterior Inference
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Confounder Trajectory Models

Abuse of notation, but let xk = (w̄k−1, ā
r
k−1, l̄k−1)

gk(lk | xk ; ηk)

E..g. Gaussian with E [Lk | xk ; ηk ] = qk(xk ; ηk),

E.g. Bernoulli with E [Lk | x̄k ; ηkp] = Φ(qk(xk ; ηk))

Can be as non-parametric or parametric as desired:

E.g. qk ∼ BART → ηk is collection of tree structures.

E.g. qk(xk) = x ′kηk → ηk is collection of regression coefficients.
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Posterior G-Computation - for K = 2

We develop adaptive MCMC algorithms to obtain m = 1, 2, . . . ,M posterior
draws for course k = 1, 2

ω
(m)
k =

{
λ

(m)
k00, β

(m)
k0 , λ

(m)
k10, β

(m)
k1 , η

(m)
k

}
For b = 1, 2, . . . ,B

1 Simulate L
(b)
1 ∼ g1(l1 | η(m)

1 ) and make decision ar1 = r(L
(b)
1 )

2 Simulate waiting time until next treatment

W
(b)
01 ∼ λ0(w1 | L(b)

1 ,A1 = ar1;λ
(m)
100 , β

(m)
10 )

3 Simulate waiting time until death W
(b)
11 ∼ λ1(w1 | L(b)

1 ,A1 = ar1;λ
(m)
110 , β

(m)
11 )

4 if W
(b)
11 <W

(b)
01 , then set T (b) = W

(b)
11 and STOP. Else

5 Simulate L
(b)
2 ∼ g2(l2 | L(b)

1 ,A1 = ar1,W
(b)
01 , η

(m)
2 ) and make decision

ar2 = r(L
(b)
2 ).

6 Simulate waiting time to death

W
(b)
12 ∼ λ1(w2 | L̄(b)

2 , Ā2 = ār2,W01 = W
(b)
01 ;λ

(m)
210 , β

(m)
21 ).

7 Set T (b) = W
(b)
01 + W

(b)
12
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Posterior Inference for Estimands

Could compute survival rate as

ψr (t)(m) =
1

B

B∑
b=1

I (T (b) > t)

Using m = 1, 2, . . . ,M draws, form point and interval estimates.

Doing this for a range of t traces out entire survival curve.

Could compute ψr (t)(m) for various rules and find the maximizing rule.

Could also consider more general utility functions.
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Analysis of AML Treatments in AAML1031

Features N = 292
Follow-up (years) 2.6 (1.3-3.7 )
Death 114 (40%)
Num. Treatment Courses, (κ)

1 22 (8%)
2 36 (12%)
3 46 (16%)
4 188 (63%)

AML Risk Classification (high) 64 (23%)
WBC (cells/uL) 20 (6.8-65)
Male 152 (52%)

Time-varying confounders:

Ejection fraction (EFk) measured before each treatment decision.

Presence of bloodstream infection.

Waiting time since previous treatment.
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A look at the data
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Ejection-Fraction Based Treatment Rules for AML

Withhold ACT at k = 1 if EFk < τ2. Withhold ACT at k = 2, 4 if ejection
fraction declined by τ1% from baseline to a value < τ2. Always withhold at course
k = 3.

Ak = r(EFk ,EF1; τ) =


1− I (EF1 < τ2) k = 1

1− I (EFk/EF1 − 1 < τ1)I (EFk < τ2) k ∈ 2, 4

0 k = 3

τ = (τ1, τ2) ∈ T = {0,−.1,−.2,−.3,−.4,−.5} × {.4, .5, .6, .7, .8, .9}.

Note: S3 = {0}.
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Posterior Survival Curves

Compare rule r with (τ1 = −.1, τ2 = .5) and rule r ′ with (τ ′1 = −.1, τ ′2 = 1).
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Thank you!

Oganisian, A., Getz, K. D., Alonzo, T. A., Aplenc, R., & Roy, J.
A. (2024). Bayesian semiparametric model for sequential
treatment decisions with informative timing. Biostatistics.
doi.org/10.1093/biostatistics/kxad035

causalBETA R package: https://arxiv.org/abs/2310.12358

Oganisian and Roy (2020). A practical introduction to Bayesian
estimation of causal effects: parametric and nonparametric
approaches. Statistics in Medicine.

We’re hiring a post-doc!

Funding: PCORI ME2021C324942; PCORI MNJ3PA7MXFN6;

Email: arman oganisian@brown.edu

Scan for Paper
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Appx: High Posterior Uncertainty for Infeasible Treatments
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Appx: Posterior Over Optimal Rule Parameters

τ∗(ω(m)) = argmax
τ∈T

Ψτ (t;ω(m))
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