Bayesian Semiparametric Inference for Dynamic
Treatment Strategies with Informative Timing

Arman Oganisian

Kelly Getz, Todd Alonzo, Richard Aplenc, Jason Roy

Department of Biostatistics
Brown University

[0 BROWN

School of Public Health

1/21



Study Motivation

Pediatric acute myeloid leukemia (AML) is a cancer of the blood and bone
marrow.

Patients move through sequence of chemotherapy courses

@ Anthracyclines (ACT) therapy is effective at suppressing cancer.

@ ACT also lowers ejection fraction (EF), which can worsen survival.
Goal: Estimate (and optimize) effect of ACT treatment rules on survival.

Data: COG AAML1031 Phase Il Trial

Reference:

Arman Oganisian, Kelly D Getz, Todd A Alonzo, Richard Aplenc, Jason A Roy, Bayesian
semiparametric model for sequential treatment decisions with informative timing, Biostatistics,
2024; kxad035, https://doi.org/10.1093/biostatistics/kxad035
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Data Generating Process - AAML1031
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Our approach

@ Bayesian semiparametric hazard models robust to misspecification.
@ Respects continuous-time nature of transitions.

@ Allows for covariate-dependent censoring and death before treatment course
completion.

@ Causal estimation: posterior survival probabilities adjusted for time-varying
confounding and informative timing.

@ Optimization: Posterior distribution over optimal rule parameters.

@ Full posterior inference for other functionals of the joint.

4/21



Notation

History: Xix = (X1, Xo, ..., Xx); Future: X, = (X, Xas1, - - - Xk)
@ k: number of treatment courses.
@ For k=1,2,...,k, define W) waiting time from treatment k to next event
Wk = min( T7 Yk+1, C) — Yk

with & € {1,0, -1},
@ Confounder history Ly.
@ Available information ahead of A, Hy = (Zk, Wk_l,ﬂk_l).

The observed data for subject i consists of D; = (L,, Ax,, W,,,,,). Full data
denoted by D = {D;}1_;.
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Dynamic ACT Assignment Rules

For k =1,2,..., K, define rule

rkZHk—>Sk

@ Available history space Hy.
@ Feasible set of treatment options Sy C A = {0,1}

®r= {rk}/i(:1
Distinct from static treatments:

® Assignment is determined dynamically: Ax = ri(hg).

o Example: ri(Ly;7) = I(Lx > 7)I(Ak—1 # 1).
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Potential Outcomes and Target Estimand

@ K(r): potential number of treatment courses.

o Wi (n(r) = {Wi(r), Wa(r), ..., Wk((r)}: potential waiting times.

o T(r)= Zk:rl Wi(r): potential survival time.

Target estimands:
@ Population-level survival rate: W"(t) = P(T(r) > t).
o Contrast effects of rules: W' (t)/W" (t).

@ For some t, find optimal rule r* = argmax,cr V'(t)

Must identify joint distribution of potential outcomes: *(wy(r), K(r) = k)

7/21



|dentification Assumptions

@ Sequential Ignorability:
W, (r), Li(r) L Ak | Axoy, L, W1, 5 > k
@ Treatment Positivity:
P(Ax = ax | He = hi, k > k) > 0

for each hy € Hy in support and each feasible ay € Sk.

Other assumptions: ignorable censoring; censoring positivity; SUTVA.
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A G-formula for W'(t): case K(r) =2

Identification via a version of the g-formula (Robins, 1986; Tsiatis et al., 2020).

£ (wa(r), K(r) =2) :/_ b1(wa | Wi, 33, b)ga(b | Wi, 87, h)fio(wa | af, h)g1(h)dh
Lo

o fis(Wk | Wk—1, a, /_k) sub-density function for waiting time, wy, until event
of type s € {0,1}.
o gl | Wk—1,3;_1, I_1): model for distribution of confounders measured at

course k.
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A G-formula for W'(t): case K(r) = k

Identification via a g-formula (Robins, 1986; Tsiatis et al., 2020).

f*(wi(r), K(r) = k) :/_ fra(wie | Wi—1, 3%, ) ek (I | Wh—1, 351, lk—1)
Ly
k-1 ) ) .
|| folw; | wi—1, a7, 1;)gi(l; | Wj—1,3_y, [i-1) dlk
1

J

o frs(wk | Wk_1, 3y, I): sub-density function for waiting time, wj, until event
of type s € {0,1}.
® gl | Wk—1,a;_q, I_k_l): model for distribution of confounders measured at

course k.
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The Cause-Specific Hazard

Model sub-density indirectly by modeling the cause-specific hazard:

Wi
frs(Wie | xk) = As(wi | xk) exp / Z (u | x du}

ve{0,1}

with feature vector xx = (Wx_1, a}, I).
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Bayesian Proportional Hazard Models

Specify a proportional hazard model for waiting times:

As(Wi | xk) = Akso(wi) exp (xiBks)
Priors

)\kSO ~ GP(O‘ks)‘zSO)
Brs ~ 3. (Brs)

@ Empirically calibrated hyperparameters

@ Good frequentist properties in simulations.

12/21



[llustration of Posterior Inference

Baseline Hazard Rate

Posterior Estimate of Baseline Hazard
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Confounder Trajectory Models

Abuse of notation, but let xx = (Wx_1, 3} _;, l_1)

&r( I | xi; M)

o E..g. Gaussian with E[Lk | xk; k] = qr(Xk; 1k ),

@ E.g. Bernoulli with E[Ly | Xic; Nip] = P(qr(xk; 1k))
Can be as non-parametric or parametric as desired:

@ E.g. gk ~ BART — 1y is collection of tree structures.

@ E.g. qi(xk) = x;mk — nx is collection of regression coefficients.
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Posterior G-Computation - for K = 2

We develop adaptive MCMC algorithms to obtain m=1,2,..., M posterior
draws for course k = 1,2

(m) { k0075k07 klO’ﬂkl ,n(m)}
Forb=1,2,...,B

O Simulate L{?) ~ g (/ | 7{™) and make decision a} = r(L{?))

© Simulate waiting time until next treatment
We ~ do(wa | L, A = a; A0, 57

© Simulate waiting time until death Wl(f) ~ A (wy

| L1 aAl = ay; >‘§T0a (m))

11
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Posterior G-Computation - for K = 2

We develop adaptive MCMC algorithms to obtain m=1,2,..., M posterior
draws for course k = 1,2

(m) { koo=5ko ) klO’ﬂkl vn(m)}
For b=1,2,...,B
O Simulate L{?) ~ g (/ | 7{™) and make decision a} = r(L{?))
@ Simulate waiting time until next treatment
W(b) ~ A\ ( | L(b) — ,—.)\(m) ﬁ(m))
01 0 a15 A1005 P10
© Simulate waiting time until death Wl(1 ~ Ai(w | L1 ) A = ar; )\gTO, (m)y

11
Q if WP < W, then set T®) = WP and STOP. Else
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Posterior G-Computation - for K = 2

We develop adaptive MCMC algorithms to obtain m=1,2,..., M posterior
draws for course k = 1,2

W™ = { NG, B N, B ™ |
Forb=1,2,....B
O Simulate L{?) ~ g (/ | 7{™) and make decision a} = r(L{?))
© Simulate waiting time until next treatment
W) ~ do(w | L, Ay = 2l A0, B
© Simulate waiting time until death Wl(f) ~ A(wy | Lgb),Al = af; )\m, §’1"))
Q if WP < W, then set T®) = WP and STOP. Else

© Simulate Lgb) ~ g(h | Lgb),Al = af, Wo(f),ngm)) and make decision
ah = r(Lgb)).

@ Simulate waiting time to death
Wi ~ M(wa | I, Ay = 35, Wor = Wors Mgt 577).

@ Set T = WP + w)
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Posterior Inference for Estimands

Could compute survival rate as
Pr(t)m = ZI(T")> t)

@ Using m=1,2,..., M draws, form point and interval estimates.

Doing this for a range of t traces out entire survival curve.
@ Could compute 9" (t)(™ for various rules and find the maximizing rule.

@ Could also consider more general utility functions.
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Analysis of AML Treatments in AAML1031

Features N =292

Follow-up (years) 2.6 (1.3-3.7)
Death 114 (40%)
Num. Treatment Courses, (k)

1 22 (8%)

2 36 (12%)

3 46 (16%)

4 188 (63%)
AML Risk Classification (high) | 64 (23%)
WBC (cells/uL) 20 (6.8-65)
Male 152 (52%)

Time-varying confounders:
@ Ejection fraction (EFy) measured before each treatment decision.
@ Presence of bloodstream infection.

@ Waiting time since previous treatment.
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A look at the data

Distribution of Waiting Times Between Treatments

Positive Correlation in Waiting Times
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Ejection-Fraction Based Treatment Rules for AML

Withhold ACT at kK = 1 if EFx < 7. Withhold ACT at k = 2,4 if ejection

fraction declined by 7% from baseline to a value < 75. Always withhold at course
k=3.

1 I(EF, < ) k=1
Ak:r(EFk,EFl;T): 17/(EFk/EF171<7'1)I(EFk<T2) ke?24
0 k=3

7=(n,m)eT=40,-1-2-3-4,-5} x{.4,5,6,.7,.8,.9}.

Note: S3 = {0}.
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Posterior Survival Curves
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Thank you!

@ Oganisian, A., Getz, K. D., Alonzo, T. A., Aplenc, R., & Roy, J.
A. (2024). Bayesian semiparametric model for sequential
treatment decisions with informative timing. Biostatistics.
doi.org/10.1093/biostatistics/kxad035 Scan for Paper

@ causalBETA R package: https://arxiv.org/abs/2310.12358

@ Oganisian and Roy (2020). A practical introduction to Bayesian
estimation of causal effects: parametric and nonparametric
approaches. Statistics in Medicine.

@ We're hiring a post-doc!
@ Funding: PCORI ME2021C324942; PCORI MNJ3PA7TMXFNG6;

@ Email: arman_oganisian@brown.edu
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Appx: High Posterior Uncertainty for Infeasible Treatments
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Appx: Posterior Over Optimal Rule Parameters

7 (w(™) = argmax W7 (£; w(™)
TET

Posterior draws of optimal rule parameters
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