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Study Motivation - Closing the HIV Retention Gap

Retention in care is a crucial component of Joint United Nations
Programme on HIV/AIDS (UNAIDS) 90-90-90 plan goals.

Ideally: patients repeatedly attend follow-up clinical appointments on time.

Reality: clinic visits may be difficult to make for certain patients.

Key decision: scheduling of follow-up appointments.

Scheduling too frequently or infrequently can lead to retention loss.
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AMPATH Care Program in Western Kenya

The Academic Model Providing Access to Healthcare (AMPATH) care program
treats roughly 150,000 patients with HIV at over 60 urban and rural clinics in
western Kenya.

At AMPATH, single-visit retention rates at
many clinics fluctuate below 90%.

Preliminary analyses show that long-term
retention drops off considerably after initial
enrollment visit.
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Point-of-Care Decision Support
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AMRS Data Structure and Notation

Subject 1
V1 = 0 V2 V3 V4 T

W1 W2 W3 W4

S1 S2 S3 S4

Subject 2

V1 = 0 V2 V3
C

W1 W2 W3

S1 S2
S3

AMPATH Medical Record System (AMRS) - longitudinal data on scheduling times, event times,
and patient features.

For each patient, we observe data on k = 1, 2, . . . ,K events after enrollment visit, k = 1.

Events can be: visit, death, or censoring event.

L̃k : at visit k, a set of P features that may (or may not) be available.

Sk : scheduled return time.

Wk : Observed weeks until next event.

δk ∈ {−1, 0, 1}: Event indicator for censoring, death, return visit - respectively.
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Incomplete Covariate Information

Covariate information such as viral load and CD4 count are assessed sporadically
at each visit.

L̃k = (L̃1k , L̃2k , . . . , L̃Pk): P−dimensional covariate vector at visit k.

Mk = (M1k ,M2k , . . . ,MPk): indicators at visit k , where Mpk = 1 indicates

that L̃pk was monitored and Mpk = 0 indicates that it was not monitored.

Lk = L̃k �Mk : Observed set of covariates at visit k .

LUk = L̃k � (1−Mk) denote the unobserved values at visit k.

Example: P = 2 covariates: four possible missingness patterns:

Pattern Mk = (1, 1): Lk = (L̃1k , L̃2k);

Pattern Mk = (0, 0): Lk = (0, 0);

Pattern Mk = (1, 0): Lk = (L̃1k , 0);

Pattern Mk = (0, 1): Lk = (0, L̃2k);
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Our Contributions

Complicated data-generating process with many moving parts:

Stochastic visit process.

Terminal and censoring events.

Sporadically observed covariate process.

What do we really mean by “retention”? And how do we compare effects of
different scheduling decisions with observational data?
In our work, we

Formalize retention in the presence of censoring and death.

Define estimands in terms of counterfactual retention under different
hypothetical scheduling decisions.

Use flexible Bayesian approaches to model return-time distributions.
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Potential ∆-Retention and Causal Estimands

Potential ∆-Retention: For a given ∆ ≥ 0, indicator for if a patient would have
returned with ∆ weeks of a hypothetical scheduled return time Sk = s following
visit k as

Y s
k (∆) = I ( W s

k − s︸ ︷︷ ︸
Delay Time

≤ ∆, δsk = 1)

Where W s
k = min(W s

Tk ,W
s
Vk) and δs = I (W s

Vk <W s
Tk).

Several ∆ may be of interest: E.g. Kenya Ministry of Health defines

Defaulter: a patient who misses their visit by 7 days.

Loss to follow-up (LTFU): a patient who misses their visit by 90 days.
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Potential ∆-Retention and Causal Estimands

Counterfactual Prediction: proportion of the subpopulation at-risk of an event at
visit k (δ̄k−1 = 1) with available history Hk = (L̄k , M̄k , S̄k−1, W̄k−1, δ̄k−1 = 1)
that would have been retained under scheduling decision s.

Ψs
k(Hk ; ∆) = P(Y s

k (∆) = 1 | L̄k , M̄k , S̄k−1, W̄k−1, δ̄k−1 = 1) for s ∈ S

Counterfactual Optimization: Finding an optimal scheduling decision

s∗(hk) = argmax
s∈S

Ψs
k(hk ; ∆)
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Identification Task

Y s
k (∆) = I (W s

k − s ≤ ∆, δsk = 1) is a function of W s
k and δsk ,

So we require identification of sub-density function of potential waiting time

f ∗kj(W
s
k = wk , δ

s
k = j | Hk = hk)

Instantaneous probability of transitioning to an event of type j at wk weeks after
visit k had we made scheduling decision s.
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Identification Assumptions

We require conditionally exchangeable scheduling

W s
Vk ,W

s
Tk ⊥ Sk | S̄k−1, W̄k−1, L̄k , M̄k = m̄k , δ̄k−1 = 1

Within each missingness pattern, M̄k = m̄k , covariates observed in that
pattern, L̄k , are sufficient to control for confounding.

Reasonable because missingness is due to monitoring: non-monitored values
L̄Uk , were unknown to clinician and so could not have influenced Sk .

Motivates estimation approach: estimate sub-density models stratified by
missingness pattern, each model adjusting for covariates observed in that
pattern.
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Identification Assumptions

Noninformative censoring: cause-specific hazard of censoring conditionally
independent of potential waiting times.

lim
dwk→0

dw−1k P(wk <Wk < w + dwk , δk = −1 |Wk > w , hk ,w
s
Vk ,w

s
Tk) =

lim
dwk→0

dw−1k P(wk <Wk < wk + dwk , δk = −1 |Wk > w , hk)

Related positivity assumptions for scheduling and censoring also required.
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Nonparametric Identification

Joint distribution of potential outcomes can be expressed in terms of observed
data cause-specific hazards,

f ∗kj(w
s
k , δ

s
k = j | Hk = hk) = λj(wk | s, hk) exp

(
−
∫ wk

0

∑
j∈{0,1}

λj(u | s, hk)du
)

Requires modeling cause-specific hazards λj(wk | s, hk) for j = {0, 1}.
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Bayesian Semiparametric Transition Models

For some covariate vector x

λj(wk | xk) = λjk0(wk) exp(gjk(xk))

E.g., gjk(hk ;βjk) can include main effects, interaction effects, spline
functions of covariates, etc - governed by coefficient vector βjk .

Piecewise baseline hazard specification λjk0(wk) with an autoregressive prior
for smoothing.

Hazard models fully stratified by each scheduling and missingness pattern
combination.
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Posterior Counterfactual Prediction and Optimization

We use Markov Chain Monte Carlo (MCMC) methods to obtain posterior draws
of {λjk0, gjk} for each j , k . Then for each s ∈ Sk an j ∈ {0, 1}.

For each subject i simulate b = 1, 2, . . . ,B events,

W
(b)
Vk ∼ λ1(wk | s, hik)

W
(b)
Tk ∼ λ0(wk | s, hik)

Set W
(b)
k = min(W

(b)
Vk ,W

(b)
Tk ) and δ

(b)
k = I (W

(b)
Vk <W

(b)
Tk ):

Posterior prediction:

P(Y s
k (∆) = 1 | Hk = hik) ≈ 1

B

B∑
b=1

I (W
(b)
k − s < ∆, δ

(b)
k = 1)

Posterior Optimization: For each draw, s∗(hik) = argmax
s∈S

P(Y s
k (∆) = 1 | hik).
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Return-Time Analysis in AMPATH: Summary Statistics

Clinic
Kitale Busia UGDH KCRH Module A

(n=3398) (n=2891) (n=2438) (n=2284)
Missing:

viral load only 1389 (.41) 607 (.21) 303 (.12) 895 (.39)
CD4 only 93 (.03) 114 (.04) 50 (.02) 73 (.03)
both 1907 (.56) 2167 (.75) 2077 (.85) 1313 (.57)
neither 9 (<.01) 3 (<.01) 8 (<.01) 3 (<.01)

Obs. log viral load 7.7 (4.8-10.1) 8.0 (5.7-10.6) 7.5 ( 4.7-9.9) 7.1 (5.0-7.7)
Obs. log CD4 5.2 (4.6-6.1) 5.6 (5.1-6.3) 5.4 (4.9-6.2) 5.2 (4.8-6.0)
Age at enroll. 36.1 (28.0-42.4) 36.0 (28.0-42.7) 35.0 (26.8-41.7) 40.2 (31.8-47.5)
Male 1261 (0.37) 1064 (0.37) 895 (0.37) 890 (0.39)
On ARV 2710 (0.80) 2688 (0.93) 2169 (0.89) 2265 (0.99)
Sched. return in

Two weeks 2848 (0.84) 2099 (0.73) 2004 (0.82) 1899 (0.83)
Four weeks 485 (0.14) 671 (0.23) 354 (0.15) 348 (0.15)
Eight weeks 65 (0.02) 121 (0.04) 80 (0.03) 37 (0.02)
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Return-Time Hazard Estimates and Clumping
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Posterior Retention Predictions
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Posterior Retention Predictions

Arman Oganisian1, Allison DeLong1, Ben Mosong3, Ann Mwangi2,3, Edwin Sang3, Joseph Hogan1 1 Department of Biostatistics, Brown University, USA 2Department of Mathematics, Physics and Computing, Moi University, Kenya 3Academic Model Providing Access to Healthcare (AMPATH), Kenya19 / 21



Conclusions

Decision recommendation/optimization is properly framed as a causal task.

When predicting potential retention, it’s important to account for competing
and censoring events.

Generative Bayesian modeling of underlying return-time outcome superior to
dichotomizing in some cases.

What’s the causal effect of the causal inference?
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