Bayesian Causal Inference in Stan

Arman Oganisian

@StableMarkets

Division of Biostatistics
Department of Biostatistics, Epidemiology, and Informatics
University of Pennsylvania

REVIEW / TUTORIAL PAPER

A Practical Introduction to Bayesian Estimation of Causal Effects: Parametric and Nonparametric Approaches Arman Oganisian ${ }^{1 *}$ and Jason A. Roy ${ }^{2}$
 ${ }^{1}$ Division of Biostatistics
 Department of Biostatistics, Epidemiology, and Informatics
 University of Pennsylvania
 ${ }^{2}$ Department of Biostatistics and Epidemiology
 Rutgers University

REVIEW / TUTORIAL PAPER

A Practical Introduction to \mathbf{P}

Effects:

REVIEW / TUTORIAL PAPER

A Practical Introduction to P Parametric and P

REVIEW / TUTORIAL PAPER

What is Causal Inference?

What would have happened had everyone in the target population if ...

- ... everyone took treatment 1 versus treatment 0 ?
- ... were vaccinated?
- ... were enrolled in a job training program?

What is Causal Inference?

What would have happened had everyone in the target population if ...

- ... everyone took treatment 1 versus treatment 0 ?
- ... were vaccinated?
- ... were enrolled in a job training program?

IDENTIFICATION VIA THE g-FORMULA

$D=\left\{Y_{i}, A_{i}, L_{i}, V_{i}\right\}_{1: n}$.
Define potential outcomes Y^{a} for $a \in\{0,1\}$

IDENTIFICATION VIA THE g-FORMULA

$D=\left\{Y_{i}, A_{i}, L_{i}, V_{i}\right\}_{1: n}$.
Define potential outcomes Y^{a} for $a \in\{0,1\}$

$$
\Psi(v)=E\left[Y^{1}-Y^{0} \mid V=v\right]
$$

IDENTIFICATION VIA THE g-FORMULA

$D=\left\{Y_{i}, A_{i}, L_{i}, V_{i}\right\}_{1: n}$.
Define potential outcomes Y^{a} for $a \in\{0,1\}$

$$
\Psi(v)=E\left[Y^{1}-Y^{0} \mid V=v\right]
$$

Under some identification assumptions

$$
E\left[Y^{a} \mid V=v\right]=\int_{\mathcal{L}} \underbrace{E[Y \mid A=a, V=v, L]}_{\text {Regression, } \mu(a, v, l)} \underbrace{d P(L)}_{\text {Confounder }}
$$

Regression Modeling

- Parametric Approaches:

$$
\mu(A, V, L)=g^{-1}\left(\beta_{0}+\beta_{1} A+\beta_{2} V+\beta_{3}^{\prime} L\right)
$$

Need priors on β s.

- Nonparametric Approaches:

$$
\mu(A, V, L)=g^{-1}(f(A, V, L))
$$

Need prior for f.

WHY BAYES?

- Priors can help us compute causal effects under sparsity.
- Avoid ad hoc approaches.
- Powerful suite of nonparametric models (BART, DP, GP, etc).
- Probabilistic sensitivity analyses.

Logistic Model For CATEs

Suppose Y is binary and $V \in\{1,2,3,4,5\}$ (e.g., race/ethnicity)

$$
Y \mid A, V, L \sim \operatorname{Ber}(\mu(A, V))
$$

Logistic Model For CATEs

Suppose Y is binary and $V \in\{1,2,3,4,5\}$ (e.g., race/ethnicity)

$$
Y \mid A, V, L \sim \operatorname{Ber}(\mu(A, V))
$$

Specify logistic regression

$$
\mu(A, V, L)=g^{-1}\left(\beta_{v}+\beta_{L}^{\prime} L+\theta_{v} A\right)
$$

with parameters $\omega=\left(\beta_{1} \ldots, \beta_{5}, \beta_{L}, \theta_{1}, \ldots, \theta_{5}\right)$

PRIOR FOR RACE EFFECTS

$$
\mu(A, V, L)=g^{-1}\left(\beta_{v}+\beta_{L}^{\prime} L+\theta_{v} A\right)
$$

- Consider "partial pooling" prior:

Prior for race effects

$$
\mu(A, V, L)=g^{-1}\left(\beta_{v}+\beta_{L}^{\prime} L+\theta_{v} A\right)
$$

- Consider "partial pooling" prior:

$$
\theta_{v} \mid \theta^{*} \sim N\left(\theta^{*}, \phi\right)
$$

- Shrinkage: shrinkage race effects towards common effect.
- Belief: the race effects shouldn't be that different.
- Causal intuition: small ϕ shrinks towards homogeneity.

Prior for race effects

$$
\mu(A, V, L)=g^{-1}\left(\beta_{v}+\beta_{L}^{\prime} L+\theta_{v} A\right)
$$

- Consider "partial pooling" prior:

$$
\theta_{v} \mid \theta^{*} \sim N\left(\theta^{*}, \phi\right)
$$

- Shrinkage: shrinkage race effects towards common effect.
- Belief: the race effects shouldn't be that different.
- Causal intuition: small ϕ shrinks towards homogeneity.
- Note: implies

$$
\theta_{4}-\theta_{5} \sim N(0,2 \phi)
$$

As opposed to setting $\phi \approx 0$

$$
\theta_{4}-\theta_{5} \sim \delta_{0}
$$

WE HAVE A DATA MODEL...NOW WHAT?

Suppose we want to compute Causal Odds Ratio:

$$
\Psi(v)=\frac{E\left(Y^{1} \mid v\right) /\left[1-E\left(Y^{1} \mid v\right)\right]}{E\left(Y^{0} \mid v\right) /\left[1-E\left(Y^{0} \mid v\right)\right]}
$$

WE HAVE A DATA MODEL...NOW WHAT?

Suppose we want to compute Causal Odds Ratio:

$$
\Psi(v)=\frac{E\left(Y^{1} \mid v\right) /\left[1-E\left(Y^{1} \mid v\right)\right]}{E\left(Y^{0} \mid v\right) /\left[1-E\left(Y^{0} \mid v\right)\right]}
$$

Using g-computation,

$$
E\left(Y^{a} \mid v\right)=\int_{\mathcal{L}} \mu(a, v, L) d P(L)
$$

But what about model for $P(L)$?

THE BAYESIAN BOOTSTRAP

- Frequentist estimate: $\hat{P}(L=l)=\sum_{i=1}^{n} \frac{1}{n} \cdot \delta_{L_{i}}(l)$

THE BAYESIAN BOOTSTRAP

- Frequentist estimate: $\hat{P}(L=l)=\sum_{i=1}^{n} \frac{1}{n} \cdot \delta_{L_{i}}(l)$
- Bayesian model: $P\left(L=l \mid p_{1: n}\right)=\sum_{i=1}^{n} p_{i} \cdot \delta_{L_{i}}(l)$

THE BAYESIAN BOOTSTRAP

- Frequentist estimate: $\hat{P}(L=l)=\sum_{i=1}^{n} \frac{1}{n} \cdot \delta_{L_{i}}(l)$
- Bayesian model: $P\left(L=l \mid p_{1: n}\right)=\sum_{i=1}^{n} p_{i} \cdot \delta_{L_{i}}(l)$
- prior:

$$
p_{1: n} \sim \operatorname{Dirichlet}\left(0_{n}\right)
$$

The Bayesian Bootstrap

- Frequentist estimate: $\hat{P}(L=l)=\sum_{i=1}^{n} \frac{1}{n} \cdot \delta_{L_{i}}(l)$
- Bayesian model: $P\left(L=l \mid p_{1: n}\right)=\sum_{i=1}^{n} p_{i} \cdot \delta_{L_{i}}(l)$
- prior:

$$
p_{1: n} \sim \operatorname{Dirichlet}\left(0_{n}\right)
$$

- posterior:

$$
\begin{gathered}
p_{1: n} \mid L \sim \operatorname{Dirichlet}\left(1_{n}\right) \\
E\left[p_{i} \mid L\right]=1 / n
\end{gathered}
$$

Full MCMC Inference

1. Obtain $m^{\text {th }}$ set of posterior draws $\omega^{(m)}$ and for each $A=a$ and $V=v$

$$
\mu^{(m)}\left(a, v, L_{i}\right)=g^{-1}\left(\beta_{v}^{(m)}+\beta_{L}^{(m)} L_{i}+\theta_{v}^{(m)} a\right)
$$

Full MCMC Inference

1. Obtain $m^{\text {th }}$ set of posterior draws $\omega^{(m)}$ and for each $A=a$ and $V=v$

$$
\mu^{(m)}\left(a, v, L_{i}\right)=g^{-1}\left(\beta_{v}^{(m)}+\beta_{L}^{(m)} L_{i}+\theta_{v}^{(m)} a\right)
$$

2. Draw Bayesian Bootstrap weights from posterior:

$$
p_{1}^{(m)}, p_{2}^{(m)}, \ldots p_{n}^{(m)} \sim \operatorname{Dirichlet}\left(1_{n}\right)
$$

Full MCMC Inference

1. Obtain $m^{\text {th }}$ set of posterior draws $\omega^{(m)}$ and for each $A=a$ and $V=v$

$$
\mu^{(m)}\left(a, v, L_{i}\right)=g^{-1}\left(\beta_{v}^{(m)}+\beta_{L}^{(m)} L_{i}+\theta_{v}^{(m)} a\right)
$$

2. Draw Bayesian Bootstrap weights from posterior:

$$
p_{1}^{(m)}, p_{2}^{(m)}, \ldots p_{n}^{(m)} \sim \operatorname{Dirichlet}\left(1_{n}\right)
$$

3. Integrate of confounder distribution

$$
E^{(m)}\left(Y^{a} \mid v\right)=\int_{\mathcal{L}} \mu(a, v, L) d P(L) \approx \sum_{i=1}^{n} \mu^{(m)}\left(a, v, L_{i}\right) \cdot p_{i}^{(m)}
$$

Full MCMC Inference

1. Obtain $m^{\text {th }}$ set of posterior draws $\omega^{(m)}$ and for each $A=a$ and $V=v$

$$
\mu^{(m)}\left(a, v, L_{i}\right)=g^{-1}\left(\beta_{v}^{(m)}+\beta_{L}^{(m)} L_{i}+\theta_{v}^{(m)} a\right)
$$

2. Draw Bayesian Bootstrap weights from posterior:

$$
p_{1}^{(m)}, p_{2}^{(m)}, \ldots p_{n}^{(m)} \sim \operatorname{Dirichlet}\left(1_{n}\right)
$$

3. Integrate of confounder distribution

$$
E^{(m)}\left(Y^{a} \mid v\right)=\int_{\mathcal{L}} \mu(a, v, L) d P(L) \approx \sum_{i=1}^{n} \mu^{(m)}\left(a, v, L_{i}\right) \cdot p_{i}^{(m)}
$$

4. Compute draw of causal odds ratio:

$$
\Psi^{(m)}(v)=\frac{E^{(m)}\left(Y^{1} \mid v\right) /\left[1-E^{(m)}\left(Y^{1} \mid v\right)\right]}{E^{(m)}\left(Y^{0} \mid v\right) /\left[1-E^{(m)}\left(Y^{1} \mid v\right)\right]}
$$

IMPLEMENTATION IN STAN

```
generated quantities {
vector[N] bb_weights = dirichlet_rng( rep_vector( 1, N) ) ;
```

-••
for (v in 1:Pv) \{
for (i in 1:N) \{
cond_mean_y1[i] = inv_logit(L[i]*beta_L + beta_v[v] + theta[v]);
cond_mean_y0[i] = inv_logit(L[i]*beta_L + beta_v[v]);
\}
marg_mean_y1 = bb_weights' * cond_mean_y1 ;
marg_mean_y0 = bb_weights' * cond_mean_y0 ;
odds_1 = marg_mean_y1/(1 - marg_mean_y1);
odds_0 = marg_mean_y0/(1 - marg_mean_y0);
odds_ratio[v] = odds_1 / odds_0;
\}
-••
\} school of Medicine Universtiv of Pentshivanaa

SyNTHETIC EXAMPLE

SENSITIVITY ANALYSIS

Identification requires conditional ignorability

$$
Y^{a} \perp A \mid L, V=v
$$

But, what if ignorability is violated?

$$
E\left[Y^{a} \mid A=1, L, v\right] \neq E\left[Y^{a} \mid A=0, L, v\right]
$$

CONSEQUENCE OF VIOLATION

Define,

$$
\Delta^{a}(L)=E\left[Y^{a} \mid A=1, L, v\right]-E\left[Y^{a} \mid A=0, L, v\right]
$$

CONSEQUENCE OF VIOLATION

Define,

$$
\begin{gathered}
\Delta^{a}(L)=E\left[Y^{a} \mid A=1, L, v\right]-E\left[Y^{a} \mid A=0, L, v\right] \\
\int \mu(1, v, L)-\mu(0, v, L) d P(L)=E\left[Y^{1}-Y^{0} \mid v\right]+\xi
\end{gathered}
$$

Estimate of risk difference is biased by ξ.

Form of Violation

Trade-offs involved in sensitivity analyses

$$
\xi=\int \Delta^{1}(L)(1-\pi(L))+\Delta^{0}(L) \pi(L) d P(L)
$$

Simplify $\Delta:=\Delta^{1}=\Delta^{0}$ and $\Delta \perp L$. Then,

$$
\xi=\Delta
$$

Now we can specify priors over Δ.

PRIORS OVER BIAS

Note that $-1<E\left[Y^{1}-Y^{0} \mid v\right]<1$ and recall:

$$
\Delta=E\left[Y^{a} \mid A=1, L, v\right]-E\left[Y^{a} \mid A=0, L, v\right]
$$

PRIORS OVER BIAS

Note that $-1<E\left[Y^{1}-Y^{0} \mid v\right]<1$ and recall:

$$
\Delta=E\left[Y^{a} \mid A=1, L, v\right]-E\left[Y^{a} \mid A=0, L, v\right]
$$

- Treated patients systematically worse:

$$
\Delta \sim U(0,1)
$$

PRIORS OVER BIAS

Note that $-1<E\left[Y^{1}-Y^{0} \mid v\right]<1$ and recall:

$$
\Delta=E\left[Y^{a} \mid A=1, L, v\right]-E\left[Y^{a} \mid A=0, L, v\right]
$$

- Treated patients systematically worse:

$$
\Delta \sim U(0,1)
$$

- Treated patients systematically better:

$$
\Delta \sim U(-1,0)
$$

PRIORS OVER BIAS

Note that $-1<E\left[Y^{1}-Y^{0} \mid v\right]<1$ and recall:

$$
\Delta=E\left[Y^{a} \mid A=1, L, v\right]-E\left[Y^{a} \mid A=0, L, v\right]
$$

- Treated patients systematically worse:

$$
\Delta \sim U(0,1)
$$

- Treated patients systematically better:

$$
\Delta \sim U(-1,0)
$$

- Biased with uncertain direction:

$$
\Delta \sim U(-1,1)
$$

MODIFIED MCMC Inference

In Step 3 at $m^{\text {th }}$ iteration:
Draw $\Delta^{(m)}$ from the prior and compute,

$$
E^{(m)}\left(Y^{a} \mid v\right)=\left\{\sum_{i=1}^{n} \mu^{(m)}\left(a, v, L_{i}\right) \cdot p_{i}^{(m)}\right\}-\Delta^{(m)}
$$

IMPLEMENTATION IN STAN

- Could specify prior for Δ in "model" block. Manipulate in "generated quantities".
- Could draw Δ from specified distribution in "generated quantities" block.

SOME RESOURCES

- A Practical Introduction to Bayesian Estimation of Causal Effects: Parametric and Nonparametric Approaches https://arxiv.org/pdf/2004.07375.pdf
- Companion GitHub repo for paper: https://github . com/stablemarkets/intro_bayesian_causal
- GitHub Repo for this talk: https://github.com/ stablemarkets/StanCon2020_BayesCausal

THANK YOU!

