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WHAT IS CAUSAL INFERENCE?

What would have happened had everyone in the target
population if ...

I ... everyone took treatment 1 versus treatment 0?
I ... were vaccinated ?
I ... were enrolled in a job training program?
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IDENTIFICATION VIA THE g-FORMULA

D = {Yi,Ai,Li,Vi}1:n.
Define potential outcomes Ya for a ∈ {0, 1}

Ψ(v) = E[Y1 − Y0 | V = v]

Under some identification assumptions

E[Ya | V = v] =

∫
L

E[Y | A = a,V = v,L]︸ ︷︷ ︸
Regression, µ(a, v, l)

dP(L)︸ ︷︷ ︸
Confounder
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REGRESSION MODELING

I Parametric Approaches:

µ(A,V,L) = g−1(β0 + β1A + β2V + β′3L)

Need priors on βs.
I Nonparametric Approaches:

µ(A,V,L) = g−1(f (A,V,L))

Need prior for f .
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WHY BAYES?

I Priors can help us compute causal effects under sparsity.
I Avoid ad hoc approaches.
I Powerful suite of nonparametric models (BART, DP, GP,

etc).
I Probabilistic sensitivity analyses.
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LOGISTIC MODEL FOR CATES

Suppose Y is binary and V ∈ {1, 2, 3, 4, 5} (e.g., race/ethnicity)

Y | A,V,L ∼ Ber
(
µ(A,V)

)

Specify logistic regression

µ(A,V,L) = g−1(βv + β′LL + θvA)

with parameters ω = (β1 . . . , β5, βL, θ1, . . . , θ5)
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PRIOR FOR RACE EFFECTS

µ(A,V,L) = g−1(βv + β′LL + θvA)

I Consider “partial pooling” prior:

θv | θ∗ ∼ N(θ∗, φ)

I Shrinkage: shrinkage race effects towards common effect.
I Belief: the race effects shouldn’t be that different.
I Causal intuition: small φ shrinks towards homogeneity.
I Note: implies

θ4 − θ5 ∼ N(0, 2φ)

As opposed to setting φ ≈ 0

θ4 − θ5 ∼ δ0
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WE HAVE A DATA MODEL...NOW WHAT?

Suppose we want to compute Causal Odds Ratio:

Ψ(v) =
E(Y1 | v)/[1− E(Y1 | v)]

E(Y0 | v)/[1− E(Y0 | v)]

Using g-computation,

E(Ya | v) =

∫
L
µ(a, v,L)dP(L)

But what about model for P(L)?
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THE BAYESIAN BOOTSTRAP

I Frequentist estimate: P̂(L = l) =
∑n

i=1
1
n · δLi(l)

I Bayesian model: P(L = l | p1:n) =
∑n

i=1 pi · δLi(l)
I prior:

p1:n ∼ Dirichlet(0n)

I posterior:
p1:n | L ∼ Dirichlet(1n)

E[pi | L] = 1/n



10/21

THE BAYESIAN BOOTSTRAP

I Frequentist estimate: P̂(L = l) =
∑n

i=1
1
n · δLi(l)

I Bayesian model: P(L = l | p1:n) =
∑n

i=1 pi · δLi(l)

I prior:
p1:n ∼ Dirichlet(0n)

I posterior:
p1:n | L ∼ Dirichlet(1n)

E[pi | L] = 1/n



10/21

THE BAYESIAN BOOTSTRAP

I Frequentist estimate: P̂(L = l) =
∑n

i=1
1
n · δLi(l)

I Bayesian model: P(L = l | p1:n) =
∑n

i=1 pi · δLi(l)
I prior:

p1:n ∼ Dirichlet(0n)

I posterior:
p1:n | L ∼ Dirichlet(1n)

E[pi | L] = 1/n



10/21

THE BAYESIAN BOOTSTRAP

I Frequentist estimate: P̂(L = l) =
∑n

i=1
1
n · δLi(l)

I Bayesian model: P(L = l | p1:n) =
∑n

i=1 pi · δLi(l)
I prior:

p1:n ∼ Dirichlet(0n)

I posterior:
p1:n | L ∼ Dirichlet(1n)

E[pi | L] = 1/n



11/21

FULL MCMC INFERENCE

1. Obtain mth set of posterior draws ω(m) and for each A = a and V = v

µ(m)(a, v, Li) = g−1(β
(m)
v + β

(m)
L Li + θ

(m)
v a)

2. Draw Bayesian Bootstrap weights from posterior:

p(m)
1 , p(m)

2 , . . . p(m)
n ∼ Dirichlet(1n)

3. Integrate of confounder distribution

E(m)(Ya | v) =

∫
L
µ(a, v, L)dP(L) ≈

n∑
i=1

µ(m)(a, v, Li) · p
(m)
i

4. Compute draw of causal odds ratio:

Ψ(m)(v) =
E(m)(Y1 | v)/[1− E(m)(Y1 | v)]

E(m)(Y0 | v)/[1− E(m)(Y1 | v)]
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IMPLEMENTATION IN STAN

generated quantities {
vector[N] bb_weights = dirichlet_rng( rep_vector( 1, N) ) ;

...

for( v in 1:Pv ){
for(i in 1:N){
cond_mean_y1[i] = inv_logit( L[i]*beta_L + beta_v[v] + theta[v]);
cond_mean_y0[i] = inv_logit( L[i]*beta_L + beta_v[v] );

}
marg_mean_y1 = bb_weights’ * cond_mean_y1 ;
marg_mean_y0 = bb_weights’ * cond_mean_y0 ;

odds_1 = marg_mean_y1/(1 - marg_mean_y1);
odds_0 = marg_mean_y0/(1 - marg_mean_y0);
odds_ratio[v] = odds_1 / odds_0;

}
...
}
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SYNTHETIC EXAMPLE



14/21

SENSITIVITY ANALYSIS

Identification requires conditional ignorability

Ya ⊥ A | L,V = v

But, what if ignorability is violated?

E[Ya | A = 1,L, v] 6= E[Ya | A = 0,L, v]
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CONSEQUENCE OF VIOLATION

Define,

∆a(L) = E[Ya | A = 1,L, v]− E[Ya | A = 0,L, v]

∫
µ(1, v,L)− µ(0, v,L) dP(L) = E[Y1 − Y0 | v] + ξ

Estimate of risk difference is biased by ξ.



15/21

CONSEQUENCE OF VIOLATION

Define,

∆a(L) = E[Ya | A = 1,L, v]− E[Ya | A = 0,L, v]

∫
µ(1, v,L)− µ(0, v,L) dP(L) = E[Y1 − Y0 | v] + ξ

Estimate of risk difference is biased by ξ.



16/21

FORM OF VIOLATION

Trade-offs involved in sensitivity analyses

ξ =

∫
∆1(L)(1− π(L)) + ∆0(L)π(L) dP(L)

Simplify ∆ := ∆1 = ∆0 and ∆ ⊥ L. Then,

ξ = ∆

Now we can specify priors over ∆.
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PRIORS OVER BIAS

Note that −1 < E[Y1 − Y0 | v] < 1 and recall:

∆ = E[Ya | A = 1,L, v]− E[Ya | A = 0,L, v]

I Treated patients systematically worse:

∆ ∼ U(0, 1)

I Treated patients systematically better:

∆ ∼ U(−1, 0)

I Biased with uncertain direction:

∆ ∼ U(−1, 1)
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MODIFIED MCMC INFERENCE

In Step 3 at mth iteration:
Draw ∆(m) from the prior and compute,

E(m)(Ya | v) =
{ n∑

i=1

µ(m)(a, v,Li) · p
(m)
i

}
−∆(m)
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IMPLEMENTATION IN STAN

I Could specify prior for ∆ in “model” block. Manipulate in
“generated quantities”.

I Could draw ∆ from specified distribution in “generated
quantities” block.
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SOME RESOURCES

I A Practical Introduction to Bayesian Estimation of Causal
Effects: Parametric and Nonparametric Approaches
https://arxiv.org/pdf/2004.07375.pdf

I Companion GitHub repo for paper: https://github.
com/stablemarkets/intro_bayesian_causal

I GitHub Repo for this talk: https://github.com/
stablemarkets/StanCon2020_BayesCausal

https://arxiv.org/pdf/2004.07375.pdf
https://github.com/stablemarkets/intro_bayesian_causal
https://github.com/stablemarkets/intro_bayesian_causal
https://github.com/stablemarkets/StanCon2020_BayesCausal
https://github.com/stablemarkets/StanCon2020_BayesCausal
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THANK YOU!


