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Analysis of Recurrent Event Outcomes

Biomedical studies often involve outcomes that can recur many times.

Goal: contrast two treatments on the basis of event occurance rate within a
defined follow-up window.

Analysis with observational data is challenging:

Lack of randomization - need to adjust for observed confounding.

Terminal events - terminal event process stops the recurrent event process.

Censoring - censoring event process coarsens both recurrent and terminal
event process.

Design - treatment rarely initiated at time zero.
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Motivating Example: Hospitalization Risk

Context: Opioids are commonly used to treat chronic back pain (CBP), but could
lead to increased hospitalization.

Question: Does opioid therapy increase hospitalization risk among patients with
CBP?

Medicare claims data.

Target population: patients with CBP who meet eligibility criteria.

Recurrent event process: hospitalizations.

Terminal event process: death.

Censoring event process: loss of medicare, end of data cut.
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Talk Outline

Data structure.

Potential outcomes and estimands.

Bayesian models.
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Observed Data Structure

time, t

t = 0 t = τ

Subject 1
V1 V2 V3 V4 V5 V6V7 UW

Subject 2
V1 V2V3 V4 CW

Subject 3
V1 V2W

Subject 4
V1 U

Subject 5
C

Time zero: date at which eligibility criteria are met.
W : time of opioid initiation.
Vj : time of jth hospitalization.
U: time of death; C : time of censoring.
Ũ = min(U,C).
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Discretized Data

time,t

τ0 = 0 τ10 = ττ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9
I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

Subject 1
V1 V2 V3 V4 V5 V6V7 UW

Subject 2
V1 V2V3 V4 CW

Subject 3
V1 V2W

Subject 4
V1 U

Subject 5
C

Data discretized into k = 1, 2, . . . ,K intervals.

Ak : binary, on opioid at interval k.

Yk : # events in interval k.

Tk : binary dead/alive status; Ck : binary censoring status.

6 / 20



Potential Outcomes and Estimands
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Treatment Initiation Strategies

To accomodate random initiation times, W , we consider time-varying treatment
strategies given by the K -vector

a(s) = (0, 0, 0, . . . , 0︸ ︷︷ ︸
entries 1 to s−1

, 1, 1, . . . , 1︸ ︷︷ ︸
entries s to K

)

for s ∈ {1, 2, . . . ,K + 1}.

There are K + 1 such strategies.

E.g. strategy s = K + 1: never initiate.

E.g. strategy s = 1: initiate at eligibility.

Can trace out an effect curve across s.
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Potential Survival and Recurrent Event Processes

Under strategy a(s),

T a(s)
k : Potential survival status at k had we followed a(s) through k.

Y a(s)
k : Potential event count at k had we followed a(s) through k.

Key constraints:

Death is an absorbing state: P(T a(s)
k = 1 | T a(s)

k−1 = 1, Ȳ a(s)
k−1 ,−) = 1

Death is a terminal event: P(Y a(s)
k = 0 | T a(s)

k = 1, Ȳ a(s)
k−1 ,−) = 1

Censoring is an intervention, but we suppress indexing so Y a(s)
k = Y a(s),c̄k=0

k .

Over/under bars denote history/future:
X̄k = (X1,X2, . . . ,Xk); X k = (Xk ,Xk+1,Xk+2, . . . ,XK )
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Marginal Contrasts of Potential Incidence Rate

Difference in expected potential incidence rate had everyone in the target
population initiated opioids at time s vs. s ′.

Ψ(s, s ′) = EP∗

[ ∑K
k=1 Y a(s)

k

K −
∑K

k=1 T a(s)
k

]
− EP∗

[ ∑K
k=1 Y a(s′)

k

K −
∑K

k=1 T a(s′)
k

]

Mimics usual incidence rates typically used for count outcomes1.

Combines information about both event count and survival.

Can consider other functions, g(Ȳ a(s)
K , T̄ a(s)

K ).

Analysis involves two sets of potential outcomes. Inherently difficult to tell a
full story with a single estimand!

Requires identification of joint probability mass function P∗.

1See Janvin et al. 2023 and Schmidli et al. 2023 for discussion in point-treatment settings
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Associational Estimand
Ever-Never Analysis 😱:

log E [Y | Ã = ã, L = l , Ũ = ũ] = β0 + β1ã + l ′β2 + log(ũ)

Y : total event count.

L: baseline covariates.

Ã: indcator of ever/never initiated opioid within [0, τ ].

exp(β1) is the associational incidence rate ratio:

exp(β1) =
E [Y /ũ | Ã = 1̃, L = l , Ũ = ũ]
E [Y /ũ | Ã = 0̃, L = l , Ũ = ũ]

Problems:

Ã misattributes person-time and events to treatment.

Conditions on post-baseline survival, Ũ.

Unclear what implicit assumptions are on censoring.
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Alternative Causal Estimand

Survivor-Average Causal Effect (SACE):

E
[ K∑

k=1

Y a(s)
k | T̄ a(s)

K = T̄ a(s′)
K = 0

]
− E

[ K∑
k=1

Y a(s′)
k | T̄ a(s)

K = T̄ a(s′)
K = 0

]

A valid causal contrast!

...but principal stratum of “always survivors” is not identifiable and may not
even be a relevant subgroup.

Recurrent event process is not “undefined” after death!
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Identification Assumptions

Given baseline confounders L, P∗ is identified under,

1. Sequential Ignorability:

Y a(s)
k ,T a(s)

k ⊥ Ck ,Ak | Āk−1, L, Ȳk−1,Ck−1 = Tk−1 = 0

2. Sequential Positivity:

λA
s (l , ȳs−1)(1− λC

s (l , ȳs−1))︸ ︷︷ ︸
initiate at s

s−1∏
k=1

(1− λA
k (l , ȳk−1))(1− λC

k (l , ȳk−1))︸ ︷︷ ︸
remain uncensored and un-initiated until s − 1

> 0

λA
k and λC

k denote hazard of treatment initiation and censoring.
Can be estimated to guide choice of s.
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Identification via G-Formula
Joint pmf, P∗, of (Ȳ a(s)

K , T̄ a(s)
K ) is identified as

P∗
(

y(k), t(k)
)
=

∫
λk(āk , ȳk−1, l)

k−1∏
j=1

f (yj | āj , ȳj−1, l)
(
1− λj(āj , ȳj−1, l)

)
dFL(l)

1 Discrete-time hazard model:

λk(āk , ȳk−1, l) = P(Tk = 1 | Tk−1 = Ck−1 = 0, āk , ȳk−1, l)

2 Recurrent event model:

f (yk | āk , ȳk−1, l) = P(Yk = yk | Tk = Ck = 0, āk , ȳk−1, l)

with corresponding intensity µk(āk , ȳk−1, l ; θ).
3 Confounder model, dFL(l).

Expectations EP∗ [g(Ȳ a(s)
K , T̄ a(s)

K )] evaluated via Monte Carlo.
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Discrete-Time Stochastic Process Models
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Discrete-Time Models

Discrete-time hazard of terminal event (death),

λk(āk , ȳk−1, l ;β) = expit
(
β0k + l ′βL + yk−1βY + βAak

)
Intensity function of Recurrent Event.

µk(āk , ȳk−1, l ; θ) = exp
(
θ0k + l ′θL + yk−1θY + θAak

)
λk and µk characterize the joint evolution of terminal and recurrent event process.

Parameters β = ({β0k}K
k=1, βL, βY , βA) and θ = ({θ0k}K

k=1, θL, θY , θA).

Flexible baseline hazard {β0k}K
k=1 and baseline intensity {θ0k}K

k=1.

Larger K → more flexability.

Bayesian inference: priors over (β, θ)×Likelihood → posterior over (β, θ).
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Estimation is Challenging for Large K

Smoothing is done in ad-hoc, trial-and-error ways. Some examples:

Young et al (2020): intercept set to be a second-order polynomial function
of k “after several bootstrap samples for the construction of confidence
intervals failed to converge under the more flexible model.”

Hernán et al. (2000): “We cannot estimate a separate intercepts for each
month k. Rather, we need to ‘borrow strength’ from subjects starting
zidovudine in months other than k to estimate [β0k ]. This can be
accomplished by assuming that [β0k ] is constant in windows of, say, 3
months.”

Dodd et al. (2019): “Taking into account the frequency and duration of
follow-up information in this analysis with the potential for covariate
information to be updated on a daily basis, it seemed sensible to use
fortnightly intervals.”

Expressing either 1) prior beliefs or 2) need for smoothing.
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Bayesian Approach: Temporal Smoothing Prior

Use joint process for {β0k}K
k=1:

β0k = η(1− ρ) + ρβ0k−1 + σεk

where εk
iid∼ N(0, 1).

Induces temporal smoothing.

In simulations, exhibits improved
MSE and credible intervals with
close to nominal frequentist
coverage.
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Effect of Delayed Opioid Initiation on Hospitalization Rate
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Takeaways and Related Work
Key takeaways:

Event occurance and survival must be
considered jointly.

Bayesian methods can be used for principled
smoothing.

Related Work:

Oganisian A, Girard A, Steingrimsson JA,
Moyo P (2024), A Bayesian framework for
causal analysis of recurrent events with timing
misalignment. Biometrics.
https://doi.org/10.1093/biomtc/ujae145

Oganisian A, Roy JA. (2021) A practical
introduction to Bayesian estimation of causal
effects: Parametric and nonparametric
approaches. Statistics in Medicine.
https://doi.org/10.1002/sim.8761
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