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BASIC SETTING

Consider a cross-sectional study with
I Binary treatment: A ∈ {0, 1}
I Continuous outcome: Y ∈ {−∞,∞}
I Single, continuous confounder: L ∈ {−∞,∞}
I Goal: estimate Ψ - the average causal effect of A on Y

Ψ = E
[

YA=1 − YA=0
]

If standard causal assumptions (ignorability, consistency, positivity, no interference)
are met, can use Standardization (Robins, 2986)

E[YA=a] =

∫
E[Y|A = a, L;β]dF(L;α)



BAYESIAN STANDARDIZATION

Terms of Ψ are computed using the posterior predictive distribution (Keil, 2017),

E
[
ỹa|Y,L

]
=

∫
α

∫
β

∫
L̃

E
[
ỹ|A = a, L̃,β

]
p(L̃|α)p(β,α|Y,L) dL̃ dβ dα (1)

Need to model conditional distribution of Y and distribution of L. E.g.,

E[Y|A = a, L = l] = β0 + β1a + β2L

I Imputation model E[Y|A = a,L,β] needs to be correctly specified.
I Two sets of rigid assumptions: causal assumptions and statistical assumptions.

I Flexible nonparameteric methods can at least help us relax the latter.
I Especially important for modeling cost data.



DP MIXTURE OF ZERO-INFLATED REGRESSION

Building off of previous methods (Hannah, 2011) (Roy, 2018), we propose the following
generative model

yi | zi, xi ∼
{
δ0(yi), zi = 1
N( xT

i βi , φi), zi = 0

zi|xi ∼ Ber( expit( xT
i γi ) )

xi,j ∼ gj,i =

{
N(λj,i, τj,i), x is continuous
Ber(pj,i), x is binary

, j ∈ {1, 2, . . . , d}(
βi,γi,λi, τi, pi

)
|G ∼ G

G ∼DP(αG0)

(2)

I Nonparametric in the sense that there are infinitely many potential parameters.
I But DP prior induces clustering. Infinitely many possible clusters.



SOME SIMULATED DATA



ESTIMATION USING MCMC METHODS

We use a Metropolis-within-Gibbs approach extended from (Neal, 2000) and similar to
(Roy, 2018).



DP-INDUCED CLUSTERING



STANDARDIZATION - DRAWING FROM POSTERIOR

PREDICTIVE UNDER DIFFERENT INTERVENTIONS

p(ỹa|y, x, z) =
∞∑

k=1

∫
θx,k

∫
βk

∫
φk

∫
γ

∫
x̃

∑
l∈{0,1}

p(ỹ|βk, φk, c = k, z̃ = l, x̃a) · p(z̃ = l|c = k, x̃a,γk)

· p(x̃a|θx,k, c = k) · p(βk, φk,γk,θx,k, c = k|y, x, z = l) dx̃dγkdφkdβkdθx,k
(3)

Ψ = E
[
p(ỹ1|y, x, z)

]
− E
[
p(ỹ0|y, x, z)

]
I Developed Monte Carlo procedure for evaluation of this integral.
I Can compute other causal contrasts, e.g. E[Y1]/E[Y0], easily.
I Can compute conditional causal effects using appropriately conditional

posterior predictive.
I Interval estimates constructed in the usual ways.



STANDARDIZATION - MCMC CHAINS
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APPENDIX 1: CAUSAL ASSUMPTIONS

I Ignorability: YAi=a
i ⊥ Ai = a|Li. Conditional on observed covariates, potential

cost is independent of treatment assignment. In randomized control trials, this
conditional independence holds by virtue of randomization.

I Consistency: cost Yi observed under the actual treatment Ai = a is equal to
YAi=a

i . Specifically, YAi=a
i = Yi|Ai = a.

I No interference: one patients treatment assignment does not impact another’s
potential outcome - YAi=a

i ⊥ Aj, ∀i 6= j. A common example of interference is a
setting in which Y represents someone’s infection status and A represents
someone’s vaccination status against the disease in question. It is reasonable to
consider that one patient’s vaccination status may impact another’s infection
status.

I Positivity: no patient has a deterministic treatment. That is, the probability is
strictly between 0 and 1 0 < P(Ai = 1|Li) < 1. If this assumption did not hold,
then one of subject i’s potential outcomes would be undefined.
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